Страница:
<< 8 9 10 11
12 13 14 >> [Всего задач: 74]
|
|
|
Сложность: 4 Классы: 10,11
|
Высота и радиус основания цилиндра равны 1. Каким наименьшим числом шаров радиуса 1
можно целиком покрыть этот цилиндр?
|
|
|
Сложность: 4+ Классы: 8,9,10
|
По аллее длиной 100 метров идут три человека со скоростями 1, 2 и 3 км/ч.
Дойдя до конца аллеи, каждый из них поворачивает и идёт назад с той же
скоростью. Доказать, что найдётся отрезок времени в 1 минуту, когда все трое
будут идти в одном направлении.
|
|
|
Сложность: 4+ Классы: 8,9,10
|
Плоскость разбита двумя семействами параллельных прямых на единичные квадратики. Назовем каемкой
квадрата
n ×
n, состоящего из квадратиков разбиения, объединение тех квадратиков, которые
хотя бы одной из своих сторон примыкают изнутри к его границе. Докажите, что существует ровно один
способ покрытия квадрата
100
×100
, состоящего из квадратиков разбиения, неперекрывающимися
каемками пятидесяти квадратов.
(Каемки могут и не содержаться в квадрате
100
× 100
.)
|
|
|
Сложность: 5 Классы: 9,10,11
|
Несколько человек в течение t минут наблюдали за улиткой. Каждый наблюдал за ней ровно 1 минуту и заметил, что за эту минуту улитка проползла ровно 1 метр. Ни в один момент времени улитка не оставалась без наблюдения. Какой наименьший и какой наибольший путь могла она проползти за эти t минут?
|
|
|
Сложность: 5 Классы: 10,11
|
Даны несколько перекрывающихся кругов, занимающие на плоскости площадь, равную
1. Доказать, что из них можно выбрать некоторое количество попарно
неперекрывающихся, чтобы их общая площадь была не менее

.
Страница:
<< 8 9 10 11
12 13 14 >> [Всего задач: 74]