ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Страница: << 33 34 35 36 37 38 39 >> [Всего задач: 501]
Вокруг квадрата со стороной 3 описана окружность. На окружности отмечена точка, расстояние от которой до одной из вершин квадрата равно 2. Найдите расстояния от этой точки до трёх других вершин квадрата.
На доске была нарисована окружность с отмеченным центром, вписанный в неё четырёхугольник и окружность, вписанная в него, также с отмеченным центром. Затем стерли четырёхугольник (сохранив одну вершину) и вписанную окружность (сохранив её центр). Восстановите какую-нибудь из стертых вершин четырёхугольника, пользуясь только линейкой и проведя не более шести линий.
Даны две окружности одинакового радиуса. Они пересекаются в точках A и B. Через точку A проведена их общая секущая, пересекающая окружности ещё в точках C и D. Через точку B проведена прямая, перпендикулярная этой секущей. Она пересекает окружности еще в точках E и F.
Точки A, B, C, D, E и F расположены на окружности. Хорды EC и AD пересекаются в точке M, а хорды BE и DF — в точке N. Докажите, что если хорды AB и CF параллельны, то они параллельны также прямой MN.
Сторона AB треугольника ABC равна 3, BC = 2AC, E — точка пересечения продолжения биссектрисы CD данного треугольника с описанной около него окружностью, DE = 1. Найдите AC.
Страница: << 33 34 35 36 37 38 39 >> [Всего задач: 501]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке