ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Лягушка прыгает по вершинам шестиугольника ABCDEF, каждый раз перемещаясь в одну из соседних вершин. |
Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 501]
Биссектрисы BB1 и CC1 треугольника ABC пересекаются в точке I. Прямая B1C1 пересекает описанную окружность треугольника ABC в точках M и N. Докажите, что радиус описанной окружности треугольника MIN вдвое больше радиуса описанной окружности треугольника ABC.
Семиугольник, три угла которого равны по 120o , вписан в окружность. Могут ли все его стороны быть различными по длине?
В трапеции ABCD известно, что AB=BC=CD . Диагонали трапеции пересекаются в точке O . Окружность, описанная около треугольника ABO , пересекает основание AD в точке E . Докажите, что BEDC — ромб.
Шестиугольник ABCDEF вписан в окружность. Оказалось, что AB=BD , CE=EF . Диагонали AC и BE пересекаются в точке X , диагонали BE и DF — в точке Y , диагонали BF и AE — в точке Z . Докажите, что треугольник XYZ — равнобедренный.
Окружность, проходящая через вершины A и C и
ортоцентр треугольника ABC , пересекает стороны
AB и BC в точках X и Y . На стороне AC
выбраны точки Z и T так, что ZX=ZY и ZA=TC .
Докажите, что BT
Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 501]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке