Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 49]
Две окружности пересекаются в точках A и B. Через точку K
первой окружности проводятся прямые KA и KB, вторично пересекающие
другую окружность в точках P и Q соответственно. Докажите, что хорда PQ окружности перпендикулярна диаметру KM первой окружности.
Пятиугольник ABCDE вписан в окружность, причём ∠B + ∠E = ∠C + ∠D. Докажите, что ∠CAD < π/3 < ∠A.
|
|
Сложность: 3 Классы: 8,9,10,11
|
Окружность $\omega_{1}$ проходит через центр $O$ окружности $\omega_{2}$ и пересекает ее в точках $A$ и $B$.
Окружность $\omega_{3}$ с центром в точке $A$ и радиусом $AB$ пересекает повторно окружности $\omega_{1}$ и $\omega_{2}$ в
точках $C$ и $D$ (отличных от $B$). Докажите, что точки $C$, $O$, $D$ лежат на одной прямой.
|
|
Сложность: 3 Классы: 9,10,11
|
Пусть $X$ — некоторая фиксированная точка на стороне $AC$ треугольника $ABC$ ($X$ отлична от $A$ и $C$). Произвольная окружность, проходящая через $X$ и $B$, пересекает отрезок $AC$ и описанную окружность треугольника $ABC$ в точках $P$ и $Q$, отличных от $X$ и $B$. Докажите, что все возможные прямые $PQ$ проходят через одну точку.
Во вписанном четырёхугольнике ABCD известны углы: ∠DAB = α, ∠ABC = β, ∠BKC = γ, где K – точка пересечения диагоналей. Найдите угол ACD.
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 49]