Страница: << 36 37 38 39 40 41 42 >> [Всего задач: 772]
Даны окружность S и прямая l, не имеющие общих
точек. Из точки P, движущейся по прямой l, проводятся
касательные PA и PB к окружности S. Докажите, что все
хорды AB имеют общую точку.
В каждый из углов треугольника ABC вписано по окружности. Из одной вершины окружности, вписанные в два других угла, видны под равными углами. Из другой – тоже. Докажите, что тогда и из третьей вершины две окружности видны под равными углами.
Окружность радиуса ua вписана в угол A треугольника ABC, окружность радиуса ub вписана в угол B; эти окружности касаются друг друга внешним образом. Докажите, что радиус
описанной окружности треугольника со сторонами
равен
где p – полупериметр треугольника ABC.
Окружность S1 вписана в угол A треугольника ABC. Из вершины C к ней проведена касательная (отличная от CA), и в образовавшийся треугольник с вершиной B вписана окружность
S2. Из вершины A к S2 проведена касательная, и в образовавшийся треугольник с вершиной C вписана окружность
S3
и т. д. Докажите, что окружность S7 совпадает с S1.
|
|
Сложность: 4 Классы: 9,10,11
|
Дан остроугольный треугольник $ABC$. Точки $A_0$ и $C_0$ – середины меньших дуг соответственно $BC$ и $AB$ его описанной окружности. Окружность, проходящая через $A_0$ и $C_0$, пересекает прямые $AB$ и $BC$ в точках $P$ и $S$, $Q$ и $R$ соответственно (все эти точки различны). Известно, что $PQ\parallel AC$. Докажите, что $A_0P+C_0S=C_0Q+A_0R$
Страница: << 36 37 38 39 40 41 42 >> [Всего задач: 772]