ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Страница: << 81 82 83 84 85 86 87 >> [Всего задач: 772]
Две окружности касаются внешним образом. К ним проведена общая внешняя касательная. На отрезке этой касательной, заключённом между точками касания, как на диаметре построена окружность. Докажите, что она касается линии центров первых двух окружностей.
К окружности, вписанной в равносторонний треугольник со стороной, равной a, проведена касательная, пересекающая две его стороны. Найдите периметр отсечённого треугольника.
Постройте хорду данной окружности, равную и параллельную заданному отрезку.
Окружность вписана в треугольник со сторонами, равными a, b и c. Найдите отрезки, на которые точка касания делит сторону, равную a.
Докажите, что две различные окружности касаются тогда и только тогда, когда они касаются некоторой прямой в одной и той же точке.
Страница: << 81 82 83 84 85 86 87 >> [Всего задач: 772]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке