Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 102 103 104 105 106 107 108 >> [Всего задач: 772]      



Задача 103937

Темы:   [ Окружность, вписанная в угол ]
[ Две касательные, проведенные из одной точки ]
[ Вспомогательные подобные треугольники ]
[ Наибольшая или наименьшая длина ]
[ Периметр треугольника ]
Сложность: 4+
Классы: 9,10,11

Дан выпуклый четырехугольник ABCD. Прямые BC и AD пересекаются в точке O, причём B лежит на отрезке O и A на отрезке OD. I – центр вписанной окружности треугольника OAB, J – центр вневписанной окружности треугольника OCD, касающейся стороны CD и продолжений двух других сторон. Перпендикуляры, опущенные из середины отрезка IJ на прямые BC и AD, пересекают соответствующие стороны четырёхугольника (не продолжения) в точках X и Y. Доказать, что отрезок XY делит периметр четырёхугольника ABCD пополам, причём из всех отрезков с этим свойством и концами на BC и AD  XY имеет наименьшую длину.

Прислать комментарий     Решение

Задача 108249

Темы:   [ Теоремы Чевы и Менелая ]
[ Две касательные, проведенные из одной точки ]
[ Вспомогательные равные треугольники ]
[ Три точки, лежащие на одной прямой ]
[ Вписанные и описанные окружности ]
Сложность: 4+
Классы: 8,9,10,11

Автор: Сонкин М.

Окружность с центром O, вписанная в треугольник ABC, касается стороны AC в точке K. Вторая окружность, также с центром O, пересекает все стороны треугольника ABC. Пусть E и F – её точки пересечения со сторонами соответственно AB и BC, ближайшие к вершине B; B1 и B2 – точки её пересечения со стороной AC, B1 – ближе к A. Докажите, что точки B, K и точка P пересечения отрезков B2E и B1F лежат на одной прямой.

Прислать комментарий     Решение

Задача 55541

Темы:   [ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Признаки и свойства касательной ]
[ Средняя линия трапеции ]
Сложность: 4+
Классы: 8,9

О выпуклом четырёхугольнике ABCD известно, что окружность с диаметром AB касается прямой CD. Докажите, что окружность с диаметром CD касается прямой AB тогда и только тогда, когда прямые BC и AD параллельны.

Прислать комментарий     Решение


Задача 52699

Темы:   [ Описанные четырехугольники ]
[ Две касательные, проведенные из одной точки ]
Сложность: 4+
Классы: 8,9

Докажите, что в выпуклый четырёхугольник, суммы противоположных сторон которого равны между собой, можно вписать окружность.

Прислать комментарий     Решение


Задача 55479

Темы:   [ Угол между касательной и хордой ]
[ Признаки и свойства касательной ]
Сложность: 4+
Классы: 8,9

Прямые PC и PD касаются окружности с диаметром AB (C и D — точки касания). Докажите, что прямая, соединяющая точку P с точкой пересечения прямых AC и BD, перпендикулярна AB.

Прислать комментарий     Решение


Страница: << 102 103 104 105 106 107 108 >> [Всего задач: 772]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .