ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Страница: << 102 103 104 105 106 107 108 >> [Всего задач: 772]
Дан выпуклый четырехугольник ABCD. Прямые BC и AD пересекаются в точке O, причём B лежит на отрезке O и A на отрезке OD. I – центр вписанной окружности треугольника OAB, J – центр вневписанной окружности треугольника OCD, касающейся стороны CD и продолжений двух других сторон. Перпендикуляры, опущенные из середины отрезка IJ на прямые BC и AD, пересекают соответствующие стороны четырёхугольника (не продолжения) в точках X и Y. Доказать, что отрезок XY делит периметр четырёхугольника ABCD пополам, причём из всех отрезков с этим свойством и концами на BC и AD XY имеет наименьшую длину.
Окружность с центром O, вписанная в треугольник ABC, касается стороны AC в точке K. Вторая окружность, также с центром O, пересекает все стороны треугольника ABC. Пусть E и F – её точки пересечения со сторонами соответственно AB и BC, ближайшие к вершине B; B1 и B2 – точки её пересечения со стороной AC, B1 – ближе к A. Докажите, что точки B, K и точка P пересечения отрезков B2E и B1F лежат на одной прямой.
О выпуклом четырёхугольнике ABCD известно, что окружность с диаметром AB касается прямой CD. Докажите, что окружность с диаметром CD касается прямой AB тогда и только тогда, когда прямые BC и AD параллельны.
Докажите, что в выпуклый четырёхугольник, суммы противоположных сторон которого равны между собой, можно вписать окружность.
Прямые PC и PD касаются окружности с диаметром AB (C и D — точки касания). Докажите, что прямая, соединяющая точку P с точкой пересечения прямых AC и BD, перпендикулярна AB.
Страница: << 102 103 104 105 106 107 108 >> [Всего задач: 772]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке