Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 109 110 111 112 113 114 115 >> [Всего задач: 772]      



Задача 111530

Темы:   [ Вписанные и описанные окружности ]
[ Теорема Пифагора (прямая и обратная) ]
[ Две касательные, проведенные из одной точки ]
Сложность: 3
Классы: 8,9

Найдите катеты прямоугольного треугольника, если известно, что радиус описанной около треугольника окружности равен R , а радиус вписанной в него окружности равен r . При каком отношении задача имеет решение?
Прислать комментарий     Решение


Задача 111583

Темы:   [ Признаки и свойства параллелограмма ]
[ Признаки и свойства касательной ]
[ Две касательные, проведенные из одной точки ]
Сложность: 3
Классы: 8,9

В треугольник ABC с прямым углом C вписана окружность, касающаяся сторон AC , BC и AB в точках M , K и N соответственно. Через точку K провели прямую, перпендикулярную отрезку MN . Она пересекла катет AC в точке X . Докажите, что CK=AX .
Прислать комментарий     Решение


Задача 115564

Темы:   [ Окружность, вписанная в угол ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Признаки и свойства касательной ]
Сложность: 3
Классы: 8,9

Один из смежных углов с вершиной A вдвое больше другого. В эти углы вписаны окружности с центрами O1 и O2 . Найдите углы треугольника O1AO2 , если отношение радиусов окружностей равно .
Прислать комментарий     Решение


Задача 115573

Темы:   [ Касающиеся окружности ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Две касательные, проведенные из одной точки ]
Сложность: 3
Классы: 8,9

Окружности с центрами O1 и O2 касаются внешним образом в точке C . Прямая касается этих окружностей в различных точках A и B соответственно. Найдите угол AO2B , если известно, что tg ABC = .
Прислать комментарий     Решение


Задача 52910

Темы:   [ Вписанные и описанные окружности ]
[ Отношение, в котором биссектриса делит сторону ]
[ Окружность, вписанная в угол ]
Сложность: 3
Классы: 8,9

В равнобедренном треугольнике основание равно 48, а боковая сторона равна 30. Найдите радиусы описанной и вписанной окружностей и расстояние между их центрами.

Прислать комментарий     Решение


Страница: << 109 110 111 112 113 114 115 >> [Всего задач: 772]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .