ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 52 53 54 55 56 57 58 >> [Всего задач: 329]      



Задача 111434

Темы:   [ Теорема косинусов ]
[ Касающиеся окружности ]
Сложность: 4
Классы: 8,9

Две окружности радиусов R и r ( R>r ) имеют внутреннее касание в точке A . Через точку B , лежащую на большей окружности, проведена прямая, касающаяся меньшей окружности в точке C . Найдите AB , если BC=a .
Прислать комментарий     Решение


Задача 111436

Темы:   [ Теорема косинусов ]
[ Касающиеся окружности ]
Сложность: 4
Классы: 8,9

Две окружности радиусов R и r ( R>r ) имеют внешнее касание в точке A . Через точку B , взятую на большей окружности, проведена прямая, касающаяся меньшей окружности в точке C . Найдите BC , если AB=a .
Прислать комментарий     Решение


Задача 115686

Темы:   [ Две касательные, проведенные из одной точки ]
[ Касающиеся окружности ]
Сложность: 4
Классы: 8,9

На стороне AC треугольника ABC выбрана точка X . Докажите, что если вписанные окружности треугольников ABX и BCX касаются друг друга, то точка X лежит на окружности, вписанной в треугольник ABC .
Прислать комментарий     Решение


Задача 52427

Темы:   [ Угол между касательной и хордой ]
[ Касающиеся окружности ]
[ Две касательные, проведенные из одной точки ]
Сложность: 4+
Классы: 8,9

Две окружности касаются внутренним образом в точке M. Пусть AB — хорда большей окружности, касающаяся меньшей окружности в точке T. Докажите, что MT — биссектриса угла AMB.

Прислать комментарий     Решение


Задача 54562

Темы:   [ ГМТ - окружность или дуга окружности ]
[ Касающиеся окружности ]
Сложность: 4+
Классы: 8,9

Даны прямая и на ней точки A и B. Найдите геометрическое место точек касания окружностей, одна из которых касается данной прямой в точке A, другая — в точке B.

Прислать комментарий     Решение


Страница: << 52 53 54 55 56 57 58 >> [Всего задач: 329]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .