ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 285]
На основании AB равнобедренного треугольника ABC взята точка D, причём BD - AD = 4. Найдите расстояние между точками, в которых окружности, вписанные в треугольники ACD и BCD, касаются отрезка CD.
Радиус окружности, вписанной в треугольник, равен 2. Точка касания этой окружности делит одну из сторон на отрезки длиной 4 и 6. Определите вид треугольника и вычислите его площадь.
В равнобедренный треугольник ABC с основанием AC вписана окружность, которая касается боковой стороны AB в точке M. Из точки M опущен перпендикуляр ML на сторону AC. Найдите величину угла C, если известно, что площадь треугольника ABC равна 1, а площадь четырёхугольника LMBC равна s.
Через вершины A и B треугольника ABC проведена окружность
радиуса 2
С помощью циркуля и линейки проведите через вершину треугольника прямую, делящую периметр треугольника пополам.
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 285]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке