ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Дан четырёхугольник; A, B, C, D — последовательные середины его сторон, P, Q — середины диагоналей. Доказать, что треугольник BCP равен треугольнику ADQ.

Вниз   Решение


Построить треугольник по высоте и медиане, выходящим из одной вершины, и радиусу описанного круга.

ВверхВниз   Решение


Через точку P, лежащую вне окружности, проводятся всевозможные прямые, пересекающие эту окружность. Найти множество середин хорд, отсекаемых окружностью на этих прямых.

ВверхВниз   Решение


Дописать к 523... три цифры так, чтобы полученное шестизначное число делилось на 7, 8 и 9.

ВверхВниз   Решение


Доказать, что произведение четырех последовательных целых чисел в сумме с единицей даёт полный квадрат.

Вверх   Решение

Задачи

Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 403]      



Задача 52531

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Диаметр, хорды и секущие ]
Сложность: 3
Классы: 8,9

В круге радиуса R даны два взаимно перпендикулярных диаметра. Произвольная точка окружности спроектирована на эти диаметры. Найдите расстояние между проекциями точки.

Прислать комментарий     Решение


Задача 53970

Темы:   [ Признаки и свойства касательной ]
[ Диаметр, основные свойства ]
Сложность: 3
Классы: 8,9

Прямая, параллельная хорде AB, касается окружности в точке C. Докажите, что треугольник ABC — равнобедренный.

Прислать комментарий     Решение


Задача 32063

Темы:   [ ГМТ - окружность или дуга окружности ]
[ Диаметр, основные свойства ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3
Классы: 8,9

Через данную точку на плоскости проводятся всевозможные прямые, пересекающие данную окружность. Найти геометрическое место середин получившихся хорд.

Прислать комментарий     Решение


Задача 35550

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Хорды и секущие (прочее) ]
Сложность: 3
Классы: 9

Через фиксированную точку внутри окружности проводятся всевозможные пары взаимно перпендикулярных хорд.
Докажите, что сумма квадратов их длин – величина постоянная.

Прислать комментарий     Решение

Задача 52723

Темы:   [ Общая касательная к двум окружностям ]
[ Диаметр, основные свойства ]
Сложность: 3
Классы: 8,9

Расстояние между центрами непересекающихся окружностей равно a . Докажите, что точки пересечения общих внешних касательных с общими внутренними касательными лежат на одной окружности и найдите её радиус.
Прислать комментарий     Решение


Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 403]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .