Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 500]
Докажите, что биссектрисы углов выпуклого четырёхугольника образуют вписанный четырёхугольник.
Докажите, что проекции точки пересечения диагоналей вписанного четырёхугольника на его стороны являются вершинами описанного четырёхугольника, если только они не попадают на продолжения сторон.
Четырёхугольник ABCD вписан в окружность с центром в точке O. Точки E и F – середины не содержащих других вершин дуг AB и CD соответственно. Прямые, проходящие через точки E и F параллельно диагоналям четырёхугольника ABCD, пересекаются в точках K и L. Докажите, что прямая KL содержит точку O.
|
|
Сложность: 3+ Классы: 9,10,11
|
Диагонали вписанного четырёхугольника ABCD пересекаются в точке P. Пусть K, L, M, N – середины соответственно сторон AB, BC, CD, AD.
Докажите, что радиусы описанных окружностей треугольников PKL, PLM, PMN и PNK равны.
|
|
Сложность: 3+ Классы: 9,10
|
Пусть ABCD – вписанный четырёхугольник. Докажите, что AC > BD тогда и только тогда, когда (AD – BC)(AB – CD) > 0.
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 500]