Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 61]
Докажите, что биссектрисы углов выпуклого
четырехугольника образуют вписанный четырехугольник.
Два различных параллелограмма ABCD и
A1B1C1D1
с соответственно параллельными сторонами вписаны в
четырехугольник PQRS (точки A и A1 лежат на стороне PQ, B
и B1 — на QR и т. д.). Докажите, что диагонали четырехугольника
параллельны сторонам параллелограммов.
Середины M и N диагоналей AC и BD выпуклого
четырехугольника ABCD не совпадают. Прямая MN пересекает
стороны AB и CD в точках M1 и N1. Докажите, что
если MM1 = NN1, то AD| BC.
|
|
Сложность: 4 Классы: 8,9,10,11
|
Верно ли, что из любого выпуклого четырёхугольника можно вырезать три уменьшенные вдвое копии этого четырёхугольника?
|
|
Сложность: 4 Классы: 10,11
|
В выпуклом четырёхугольнике ABCD точка M – середина диагонали AC, точка N – середина диагонали BD. Прямая MN пересекает стороны AB и CD в точках M' и N'. Доказать, что если MM' = NN', то BC || AD.
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 61]