ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 173]      



Задача 53839

Темы:   [ Ромбы. Признаки и свойства ]
[ Подобные треугольники (прочее) ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Отношение, в котором биссектриса делит сторону ]
Сложность: 3
Классы: 8,9

В равнобедренный треугольник ABC вписан ромб DECF так, что вершина E лежит на стороне BC, вершина F – на стороне AC и вершина D – на стороне AB. Найдите длину стороны ромба, если  AB = BC = 12,  AC = 6.

Прислать комментарий     Решение

Задача 53840

Темы:   [ Ромбы. Признаки и свойства ]
[ Отношение, в котором биссектриса делит сторону ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 3
Классы: 8,9

На каждой стороне ромба находится по одной вершине квадрата, стороны которого параллельны диагоналям ромба.
Найдите сторону квадрата, если диагонали ромба равны 8 и 12.

Прислать комментарий     Решение

Задача 54089

Темы:   [ Ромбы. Признаки и свойства ]
[ Пересекающиеся окружности ]
[ Симметрия помогает решить задачу ]
Сложность: 3
Классы: 8,9

Две равные окружности с центрами O1 и O2 пересекаются в точках A и B. Отрезок O1O2 пересекает эти окружности в точках M и N.
Докажите, что четырёхугольники O1AO2B и AMBN – ромбы.

Прислать комментарий     Решение

Задача 54093

Темы:   [ Ромбы. Признаки и свойства ]
[ Построения ]
Сложность: 3
Классы: 8,9

С помощью циркуля и линейки опишите около данной окружности ромб с данным углом.

Прислать комментарий     Решение

Задача 54211

Темы:   [ Ромбы. Признаки и свойства ]
[ Теорема Пифагора (прямая и обратная) ]
[ Теорема о сумме квадратов диагоналей ]
Сложность: 3
Классы: 8,9

Высота ромба, проведённая из вершины тупого угла, делит его сторону на отрезки длины a и b. Найдите диагонали ромба.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 173]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .