ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 173]      



Задача 53759

Темы:   [ Ромбы. Признаки и свойства ]
[ Подобные треугольники (прочее) ]
Сложность: 3+
Классы: 8,9

В параллелограмм вписан ромб так, что его стороны параллельны диагоналям параллелограмма.
Найдите сторону ромба, если диагонали параллелограмма равны l и m.

Прислать комментарий     Решение

Задача 53784

Темы:   [ Ромбы. Признаки и свойства ]
[ Подобные треугольники (прочее) ]
Сложность: 3+
Классы: 8,9

В треугольник вписан ромб со стороной m так, что одни угол у них общий, а противоположная вершина ромба лежит на стороне треугольника и делит эту сторону на отрезки, равные p и q. Найдите стороны треугольника.

Прислать комментарий     Решение

Задача 54346

Темы:   [ Ромбы. Признаки и свойства ]
[ Теорема Пифагора (прямая и обратная) ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

На стороне AD ромба ABCD взята точка M, причём  MD = 0,3AD  и  BM = MC = 11.  Найдите площадь треугольника BCM.

Прислать комментарий     Решение

Задача 54349

Темы:   [ Ромбы. Признаки и свойства ]
[ Теорема Пифагора (прямая и обратная) ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

На продолжении стороны AB ромба ABCD за точку B взята точка M, причём  MD = MC  и  ∠MDC = arctg 8/5.  Найдите отношение отрезков MA и MB.

Прислать комментарий     Решение

Задача 54386

Темы:   [ Ромбы. Признаки и свойства ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 3+
Классы: 8,9

На продолжении стороны AD ромба ABCD за точку D взята точка K. Прямые AC и BK пересекаются в точке Q. Известно, что  AK = 14  и что точки A, B и Q лежат на окружности радиуса 6, центр которой принадлежит отрезку AK. Найдите BK.

Прислать комментарий     Решение

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 173]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .