Страница:
<< 5 6 7 8
9 10 11 >> [Всего задач: 173]
В параллелограмм вписан ромб так, что его стороны параллельны диагоналям параллелограмма.
Найдите сторону ромба, если диагонали параллелограмма равны l и m.
В треугольник вписан ромб со стороной m так, что одни угол у них общий, а противоположная вершина ромба лежит на стороне треугольника и делит эту сторону на отрезки, равные p и q. Найдите стороны треугольника.
На стороне AD ромба ABCD взята точка M, причём MD = 0,3AD и BM = MC = 11. Найдите площадь треугольника BCM.
На продолжении стороны AB ромба ABCD за точку B взята точка M, причём MD = MC и ∠MDC = arctg 8/5. Найдите отношение отрезков MA и MB.
На продолжении стороны AD ромба ABCD за точку D взята точка K. Прямые AC и BK пересекаются в точке Q. Известно, что AK = 14 и что точки A, B и Q лежат на окружности радиуса 6, центр которой принадлежит отрезку AK. Найдите BK.
Страница:
<< 5 6 7 8
9 10 11 >> [Всего задач: 173]