ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 173]      



Задача 110959

Темы:   [ Ромбы. Признаки и свойства ]
[ Вычисление площадей ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Теорема косинусов ]
Сложность: 4-
Классы: 8,9

Дан ромб ABCD с тупым углом при вершине A. На продолжении стороны AD за точку D взята точка K. Отрезки BK и CD пересекаются в точке L.
Найдите площадь треугольника ABK, если  BL = 2,  KL = 5,  а высота ромба равна 1.

Прислать комментарий     Решение

Задача 110960

Темы:   [ Ромбы. Признаки и свойства ]
[ Вычисление площадей ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Теорема синусов ]
Сложность: 4-
Классы: 8,9

Даны треугольник ABC и ромб BDEF, все вершины которого лежат на сторонах треугольника ABC, а угол при вершине E – тупой.
Найдите площадь треугольника ABC, если  AE = 3,  CE = 7,  а радиус окружности, вписанной в ромб, равен 1.

Прислать комментарий     Решение

Задача 110961

Темы:   [ Ромбы. Признаки и свойства ]
[ Вычисление площадей ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Теорема косинусов ]
Сложность: 4-
Классы: 8,9

На продолжении стороны BC ромба ABCD за точку B взята точка M так, что угол MDC – тупой. Отрезки AB и DM пересекаются в точке N.
Найдите площадь треугольника CDM, если  DN = 3,  MN = 4,  а высота ромба равна 2.

Прислать комментарий     Решение

Задача 110962

Темы:   [ Ромбы. Признаки и свойства ]
[ Вычисление площадей ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Теорема синусов ]
Сложность: 4-
Классы: 8,9

Даны треугольник ABC с тупым углом при вершине A и ромб CDEF, все вершины которого лежат на сторонах треугольника ABC.
Найдите площадь треугольника ABC, если  AE = 2,  BE = 7,  а радиус окружности, вписанной в ромб, равен ½.

Прислать комментарий     Решение

Задача 54358

Темы:   [ Ромбы. Признаки и свойства ]
[ Теорема косинусов ]
Сложность: 4
Классы: 8,9

В ромбе ABCD угол $ \angle$ABC = 60o. Окружность касается прямой AD в точке A, центр окружности лежит внутри ромба. Касательные к окружности, проведённые из точки C, перпендикулярны. Найдите отношение периметра ромба к длине окружности.

Прислать комментарий     Решение


Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 173]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .