Страница: << 38 39 40 41 42 43 44 >> [Всего задач: 293]
Описанная окружность треугольника ABC пересекает стороны AD и CD параллелограмма ABCD в точках K и L. Пусть M – середина дуги KL, не содержащей точку B. Докажите, что DM ⊥ AC.
На одной стороне угла O взяты точки K, L, M, а на другой – точки P, Q, R так, что KQ ⊥ PR,
PL ⊥ KM, LR ⊥ PQ, QM ⊥ KL. Отношение расстояния от центра описанной вокруг
четырёхугольника KPRM окружности до точки O к длине отрезка KP равно 17/6. Найдите величину угла O.
На диагонали AC выпуклого четырёхугольника ABCD находится
центр окружности радиуса r, касающейся сторон AB, AD и BC.
На диагонали BD находится центр окружности такого же радиуса r,
касающейся сторон BC, CD и AD. Найдите площадь четырёхугольника
ABCD, зная, что указанные окружности касаются друг друга внешним
образом.
Углы при основании AD трапеции ABCD равны 2
и 2
. Докажите, что трапеция описанная тогда и только тогда,
когда
BC/AD = tg
tg
.
В треугольнике ABC проведены отрезки PQ и RS,
параллельные стороне AC, и отрезок BM (рис.). Трапеции RPKL
и MLSC описанные. Докажите, что трапеция APQC тоже описанная.
Страница: << 38 39 40 41 42 43 44 >> [Всего задач: 293]