Страница:
<< 22 23 24 25
26 27 28 >> [Всего задач: 167]
В трапеции KLMN основания KN и LM равны 12 и 3 соответственно. Из точки Q, лежащей на стороне MN, опущен перпендикуляр QP на сторону KL. Известно, что P – середина стороны KL, PM = 4 и что площадь четырёхугольника PLMQ в четыре раза меньше площади четырёхугольника PKNQ.
Найдите длину отрезка PN.
|
|
|
Сложность: 3+ Классы: 7,8,9
|
Длина высоты AB прямоугольной трапеции ABCD равна сумме длин оснований AD и BC. В каком отношении биссектриса угла B делит сторону CD.
Стороны AB, BC, CD и DA четырёхугольника ABCD равны соответственно сторонам A'B', B'C', C'D' и D'A' четырёхугольника A'B'C'D', причём известно, что AB || CD и B'C' || D'A'. Докажите, что оба четырёхугольника – параллелограммы.
Точки P и Q – середины оснований AD и BC
трапеции ABCD соответственно. Оказалось, что AB = BC, а точка P лежит на биссектрисе угла B.
Докажите, что BD = 2PQ.
|
|
|
Сложность: 3+ Классы: 9,10
|
В трапеции ABCD с основаниями AD и BC лучи AB и DC пересекаются в точке K. Точки P и Q – центры описанных окружностей треугольников ABD и BCD. Докажите, что ∠PKA = ∠QKD.
Страница:
<< 22 23 24 25
26 27 28 >> [Всего задач: 167]