Страница:
<< 75 76 77 78
79 80 81 >> [Всего задач: 509]
|
|
|
Сложность: 4 Классы: 7,8,9,10
|
От пирога, имеющего форму выпуклого пятиугольника, можно отрезать треугольный
кусок по линии, пересекающей в точках, отличных от вершин, две соседние стороны;
от оставшейся части пирога — следующий кусок (таким же образом) и т.д.
В какие точки пирога можно воткнуть свечку, чтобы её нельзя было отрезать?
а) 10 точек, делящие окружность на 10 равных дуг, попарно соединены пятью хордами. Обязательно ли среди них найдутся две хорды одинаковой длины?
б) 20 точек, делящие окружность на 20 равных дуг, попарно соединены 10 хордами. Докажите, что среди них обязательно найдутся две хорды одинаковой длины?
Внутри треугольника ABC взята точка K. Известно, что
AK = 1, KC =
, а углы AKC, ABK и KBC равны 120°, 15° и 15° соответственно. Найдите BK.
|
|
|
Сложность: 4 Классы: 9,10,11
|
а) Докажите, что любая прямая, делящая пополам площадь и периметр треугольника, проходит через центр вписанной окружности.
б) Докажите аналогичное утверждение для любого описанного многоугольника.
|
|
|
Сложность: 4 Классы: 9,10,11
|
На плоскости проведены n > 2 прямых общего положения (то есть никакие две прямые не параллельны и никакие три не пересекаются в одной точке). Эти прямые разрезали плоскость на несколько частей. Какое
а) наименьшее;
б) наибольшее
количество углов может быть среди этих частей?
Страница:
<< 75 76 77 78
79 80 81 >> [Всего задач: 509]