Страница:
<< 31 32 33 34 35 36
37 >> [Всего задач: 181]
|
|
Сложность: 5 Классы: 9,10,11
|
В четырёхугольнике ABCD AB = BC, ∠A = ∠B = 20°, ∠C = 30°. Продолжение стороны AD пересекает BC в точке M, а продолжение стороны CD пересекает AB в точке N. Найдите угол AMN.
|
|
Сложность: 6- Классы: 8,9,10
|
При каких n правильный n-угольник можно разместить на листе бумаги в линейку так, чтобы все вершины лежали на линиях?
(Линии — параллельные прямые, расположенные на одинаковых расстояниях друг от друга.)
|
|
Сложность: 4 Классы: 8,9,10
|
Имеется два правильных пятиугольника с одной общей вершиной. Вершины каждого
пятиугольника нумеруются по часовой стрелке цифрами от 1 до 5, причём в общей
вершине ставится цифра 1. Вершины с одинаковыми номерами соединены прямыми.
Доказать, что полученные четыре прямые пересекаются в одной точке.
|
|
Сложность: 5+ Классы: 9,10,11
|
|
а) На рис. 1 плоскость покрыта квадратами пяти цветов. Центры квадратов одного и того же цвета расположены в вершинах сетки из одинаковых квадратов. При каком числе n цветов возможно аналогичное заполнение плоскости?
б) На рис. 2 плоскость покрыта шестиугольниками семи цветов так, что центры шестиугольников одного и того же цвета образуют вершины решётки из одинаковых правильных треугольников. При каком числе n цветов возможно аналогичное построение?
Примечание. Имеются в виду только такие заполнения плоскости фигурками (квадратами или шестиугольниками), при котором сетка, соответствующая какому-то одному цвету, имеет такие же размеры и направления сторон квадратов (или треугольников), как и сетка, соответствующая любому другому цвету (то есть все сетки должны получаться друг из друга параллельным сдвигом). |
|
Существует ли выпуклый пятиугольник, в котором каждая диагональ равна какой-то стороне?
Страница:
<< 31 32 33 34 35 36
37 >> [Всего задач: 181]