Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 101]
Докажите, что площадь правильного восьмиугольника
равна произведению длин наибольшей и наименьшей его диагоналей.
|
|
Сложность: 3 Классы: 9,10,11
|
В выпуклом четырёхугольнике ABCD отмечены середины противоположных сторон BC и AD– точки M и N. Диагональ AC проходит через середину отрезка MN. Найдите площадь АВСD, если площадь треугольника АВС равна S.
|
|
Сложность: 3 Классы: 8,9,10,11
|
Никита нарисовал и закрасил выпуклый пятиугольник с периметром $20$ и
площадью $21$. Таня закрасила все точки, находящиеся на расстоянии не более $1$ от закрашенных Никитой (см. рис.).
На сколько увеличилась закрашенная площадь? Ответ округлите до сотых.
|
|
Сложность: 3 Классы: 8,9,10,11
|
A – вершина правильного звёздчатого пятиугольника. Ломаная
AA'BB'CC'DD'EE' является его внешним контуром. Прямые AB и DE
продолжены до пересечения в точке F. Докажите, что многоугольник
ABB'CC'DED' равновелик четырёхугольнику AD'EF.
|
|
Сложность: 3 Классы: 6,7,8
|
У нумизмата Феди все монеты имеют диаметр не больше 10 см. Он хранит их в
плоской коробке размером 30×70 см (в один слой). Ему подарили монету
диаметром 25 см. Докажите, что все монеты можно уложить в одну плоскую коробку размером 55×55 см.
Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 101]