ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Преобразования плоскости
>>
Движения
>>
Осевая и скользящая симметрии
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Страница: << 51 52 53 54 55 56 57 >> [Всего задач: 563]
С помощью циркуля и линейки постройте треугольник по двум сторонам и разности углов, прилежащих к третьей.
С помощью циркуля и линейки постройте треугольник ABC, если известно, что AB = c, BC - AC = a, C = .
В окружности с центром O проведён диаметр; A и B — точки окружности, расположенные по одну сторону от этого диаметра. На диаметре взята такая точка M, что AM и BM образуют равные углы с диаметром. Докажите, что AOB = AMB.
Точки M и N расположены по разные стороны от прямой l и удалены от этой прямой на разные расстояния. С помощью циркуля и линейки постройте на прямой l такую точку K, чтобы разность отрезков MK и NK была наибольшей.
Страница: << 51 52 53 54 55 56 57 >> [Всего задач: 563] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|