ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 50 51 52 53 54 55 56 >> [Всего задач: 563]      



Задача 115868

Темы:   [ Вписанные и описанные окружности ]
[ Свойства симметрий и осей симметрии ]
[ Свойства симметрии и центра симметрии ]
[ Отношение, в котором биссектриса делит сторону ]
[ Подобные треугольники ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 4-
Классы: 8,9,10,11

В треугольнике ABC провели биссектрису CL. Точки A1 и B1 симметричны точкам A и B относительно прямой CL, A2 и B2 симметричны точкам A и B относительно точки L. Пусть O1 и O2 – центры описанных окружностей треугольников AB1B2 и BA1A2. Докажите, что углы O1CA и O2CB равны.

Прислать комментарий     Решение

Задача 115902

Темы:   [ Две пары подобных треугольников ]
[ Симметрия помогает решить задачу ]
[ Длины сторон, высот, медиан и биссектрис ]
Сложность: 4-
Классы: 8,9,10,11

В треугольнике ABC  AB – BC = .  Пусть M – середина стороны AC, а BN – биссектриса.  Докажите, что  ∠BMC + ∠BNC = 90°.

Прислать комментарий     Решение

Задача 116897

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Осевая и скользящая симметрии (прочее) ]
[ Признаки равенства прямоугольных треугольников ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Отношения линейных элементов подобных треугольников ]
Сложность: 4-
Классы: 8,9

Квадратный лист бумаги согнули по прямой так, что одна из вершин квадрата оказалась на несмежной стороне. При этом образовалось три треугольника. В эти треугольники вписали окружности (см. рис.). Докажите, что радиус одной из этих окружностей равен сумме радиусов двух других.

Прислать комментарий     Решение

Задача 116941

Темы:   [ Исследование квадратного трехчлена ]
[ Симметрия помогает решить задачу ]
Сложность: 4-
Классы: 8,9,10

Даны три квадратных трёхчлена P(x), Q(x) и R(x) с положительными старшими коэффициентами, имеющие по два различных корня. Оказалось, что при подстановке корней трёхчлена R(x) в многочлен  P(x) + Q(x)  получаются равные значения. Аналогично при подстановке корней трёхчлена P(x) в многочлен  Q(x) + R(x)  получаются равные значения, а также при подстановке корней трёхчлена Q(x) в многочлен  P(x) + R(x)  получаются равные значения. Докажите, что три числа: сумма корней трёхчлена P(x), сумма корней трёхчлена Q(x) и сумма корней трёхчлена R(x) равны между собой.

Прислать комментарий     Решение

Задача 55560

Темы:   [ Симметрия помогает решить задачу ]
[ Симметрия и построения ]
Сложность: 4
Классы: 8,9

Внутри острого угла даны точки M и N. Как из точки M направить луч света, чтобы он, отразившись последовательно от сторон угла, попал в точку N?

Прислать комментарий     Решение


Страница: << 50 51 52 53 54 55 56 >> [Всего задач: 563]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .