Страница:
<< 90 91 92 93
94 95 96 >> [Всего задач: 563]
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Пусть M – середина основания AC равнобедренного треугольника ABC. На сторонах AB и BC отмечены соответственно точки E и F так, что AE ≠ CF и
∠FMC = ∠MEF = α. Найдите ∠AEM.
Восстановите треугольник ABC по вершине B, центру тяжести и точке пересечения L симедианы, проведённой из вершины B, с описанной окружностью.
Дан квадрат ABCD. На продолжении диагонали AC за точку C отмечена такая точка K, что BK = AC. Найдите угол BKC.
Из вершины A остроугольного треугольника ABC по биссектрисе угла A выпустили бильярдный шарик, который отразился от стороны BC по закону "угол падения равен углу отражения" и дальше катился по прямой, уже ни от чего не отражаясь. Докажите, что если ∠A = 60°, то траектория шарика проходит через центр описанной окружности треугольника ABC.
Дан квадрат ABCD. Первая окружность касается сторон угла A, вторая – сторон угла B, причём сумма диаметров окружностей равна стороне квадрата. Докажите, что одна из общих касательных этих окружностей пересекает сторону AB в её середине.
Страница:
<< 90 91 92 93
94 95 96 >> [Всего задач: 563]