Страница: << 1 2 3 4 5 6 >> [Всего задач: 27]
На плоскости дан угол, образованный двумя лучами a и b, и
некоторая точка M.
Провести через точку M прямую c так, чтобы треугольник, образованный прямыми a, b и c, имел периметр данной величины.
Докажите, что внутри остроугольного треугольника существует такая точка, что
основания перпендикуляров, опущенных из неё на стороны, являются вершинами
равностороннего треугольника.
Впишите в данный треугольник ABC прямоугольник PQRS
(вершины R и Q лежат на сторонах AB и BC, P и S — на
стороне AC) так, чтобы его диагональ имела данную длину.
Проведите через данную точку M прямую так,
чтобы она отсекала от данного угла с вершиной A треугольник ABC
данного периметра 2p.
Постройте треугольник ABC по медиане mc и
биссектрисе lc, если
C = 90o.
Страница: << 1 2 3 4 5 6 >> [Всего задач: 27]