ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 23]      



Задача 64740

Темы:   [ Окружность Аполлония ]
[ Касающиеся окружности ]
[ Теорема Птолемея ]
[ Неравенство Коши ]
Сложность: 5
Классы: 9,10

Автор: Белухов Н.

В треугольнике ABC  ALa и AMa – внутренняя и внешняя биссектрисы угла A. Пусть ωa – окружность, симметричная описанной окружности Ωa треугольника ALaMa относительно середины BC. Окружность ωb определена аналогично. Докажите, что ωa и ωb касаются тогда и только тогда, когда треугольник ABC прямоугольный.

Прислать комментарий     Решение

Задача 36996

Темы:   [ Построение треугольников по различным элементам ]
[ Окружность Аполлония ]
[ ГМТ - окружность или дуга окружности ]
[ Гомотетия (ГМТ) ]
[ Свойства медиан. Центр тяжести треугольника. ]
Сложность: 3+
Классы: 8,9

Автор: Фольклор

Постройте треугольник АВС по углу А и медианам, проведенным из вершин В и С.

Прислать комментарий     Решение

Задача 116188

Темы:   [ ГМТ - окружность или дуга окружности ]
[ Окружность Аполлония ]
[ Подобные треугольники (прочее) ]
[ Замечательные точки и линии в треугольнике (прочее) ]
[ Изогональное сопряжение ]
Сложность: 4
Классы: 8,9

В окружность вписан треугольник ABC. Постройте такую точку P, что точки пересечения прямых AP, BP и CP с данной окружностью являются вершинами равностороннего треугольника.

Прислать комментарий     Решение

Задача 61144

Темы:   [ Алгебраические уравнения в C. Извлечение корня ]
[ Геометрия комплексной плоскости ]
[ Окружность Аполлония ]
Сложность: 4-
Классы: 10,11

Докажите, что все корни уравнения  a(z – b)n = c(z – d )n, где a, b, c, d – заданные комплексные числа, расположены на одной окружности или прямой.

Прислать комментарий     Решение

Задача 65938

Темы:   [ Вписанные и описанные окружности ]
[ Построения одной линейкой ]
[ Окружность Аполлония ]
[ Теоремы Чевы и Менелая ]
Сложность: 4
Классы: 9,10

В треугольник АВС вписана окружность и отмечен её центр I и точки касания P, Q, R со сторонами ВС, СА, АВ соответственно. Одной линейкой постройте точку К, в которой окружность, проходящая через вершины В и С, касается (внутренним образом) вписанной окружности.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 >> [Всего задач: 23]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .