ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 75]      



Задача 35507

Темы:   [ Неравенство треугольника (прочее) ]
[ Системы точек ]
[ Длины и периметры (геометрические неравенства) ]
Сложность: 3
Классы: 8,9

На окружности радиуса 1 отмечено 100 точек.
Докажите, что на окружности найдётся точка, сумма расстояний от которой до всех отмеченных точек будет не меньше 100.

Прислать комментарий     Решение

Задача 35768

Темы:   [ Сочетания и размещения ]
[ Системы точек ]
Сложность: 3
Классы: 7,8,9

Нарисуйте на плоскости шесть точек так, чтобы они служили вершинами ровно для 17 треугольников.

Прислать комментарий     Решение

Задача 98317

Темы:   [ Выход в пространство ]
[ Системы точек ]
[ Раскраски ]
[ Проектирование помогает решить задачу ]
[ Признаки и свойства параллелограмма ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 9,10,11

Можно ли нарисовать на плоскости четыре красных и четыре чёрных точки так, чтобы для каждой тройки точек одного цвета нашлась такая точка другого цвета, что эти четыре точки являются вершинами параллелограмма?

Прислать комментарий     Решение

Задача 105109

Темы:   [ Системы отрезков, прямых и окружностей ]
[ Системы точек ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 6,7,8

Можно ли расставить охрану вокруг точечного объекта так, чтобы ни к объекту, ни к часовым нельзя было незаметно подкрасться? (Каждый часовой стоит неподвижно и видит на 100 м строго вперёд.)
Прислать комментарий     Решение


Задача 107739

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Системы точек ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4-
Классы: 7,8,9

Расположите на плоскости как можно больше точек так, чтобы любые три точки не лежали на одной прямой и являлись вершинами равнобедренного треугольника.

Прислать комментарий     Решение

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 75]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .