ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 49 50 51 52 53 54 55 >> [Всего задач: 1027]      



Задача 116447

Темы:   [ Числовые таблицы и их свойства ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3-
Классы: 8,9,10

Автор: Фольклор

В клетках квадратной таблицы 5×5 расставлены числа 1 и –1. Известно, что строк с положительной суммой больше, чем с отрицательной.
Какое наибольшее количество столбцов этой таблицы может оказаться с отрицательной суммой?

Прислать комментарий     Решение

Задача 30782

Темы:   [ Степень вершины ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 7,8

Верно ли, что два графа изоморфны, если
  а) у них по 10 вершин, степень каждой из которых равна 9?
  б) у них по 8 вершин, степень каждой из которых равна 3?
  в) они связны, без циклов и содержат по 6 рёбер?

Прислать комментарий     Решение

Задача 30917

Темы:   [ Числовые неравенства. Сравнения чисел. ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 6,7

Существует ли набор чисел, сумма которых равна 1, а сумма их квадратов меньше 0,01?

Прислать комментарий     Решение

Задача 32061

Темы:   [ Перебор случаев ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 5,6,7,8

За круглым столом сидело а) 15; б) 20 человек. Они хотят пересесть так, чтобы те, кто раньше сидел рядом, теперь сидели бы через два человека. Возможно ли это?

Прислать комментарий     Решение


Задача 32121

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Примеры и контрпримеры. Конструкции ]
[ Арифметика остатков (прочее) ]
Сложность: 3
Классы: 8,9,10

Дан куб 4×4×4. Расставьте в нем 16 ладей так, чтобы они не били друг друга.

Прислать комментарий     Решение

Страница: << 49 50 51 52 53 54 55 >> [Всего задач: 1027]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .