ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 51 52 53 54 55 56 57 >> [Всего задач: 1027]      



Задача 35724

Темы:   [ Арифметическая прогрессия ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 8,9,10

Может ли сумма 1000 последовательных нечётных чисел быть седьмой степенью натурального числа?
Прислать комментарий     Решение


Задача 35834

Темы:   [ Четность и нечетность ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 6,7

Найти наибольшее значение, которое может принимать выражение  aek – afh + bfg – bdk + cdh – ceg,  если каждое из чисел a, b, c, d, e, f, g, h, k равно ±1.

Прислать комментарий     Решение

Задача 60476

Темы:   [ Простые числа и их свойства ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 7,8,9

Верно ли, что все числа вида  p1p2...pn + 1 являются простыми? (pkk-е простое число.)

Прислать комментарий     Решение

Задача 60903

Темы:   [ Теория алгоритмов (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 8,9,10

Пусть l (n) — наименьшее число умножений, необходимое для нахождения xn. На примере чисел n = 15 и n = 63 покажите, что бинарный метод возведения в степень (смотри задачу 5.64) не всегда оптимален, то есть для некоторых n выполняется неравенство l (n) < b(n).

Прислать комментарий     Решение

Задача 64421

Темы:   [ Числовые таблицы и их свойства ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 9,10

Можно ли в клетки таблицы размером 4×4 вписать по целому числу так, чтобы сумма всех чисел таблицы была положительной, а сумма чисел в каждом квадрате размера 3×3 была отрицательной?

Прислать комментарий     Решение

Страница: << 51 52 53 54 55 56 57 >> [Всего задач: 1027]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .