ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 1027]      



Задача 116378

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Арифметическая прогрессия ]
Сложность: 3
Классы: 8,9

В вершинах 33-угольника записали в некотором порядке целые числа от 1 до 33. Затем на каждой стороне написали сумму чисел в её концах.
Могут ли на сторонах оказаться 33 последовательных целых числа (в каком-нибудь порядке)?

Прислать комментарий     Решение

Задача 116381

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Числовые таблицы и их свойства ]
Сложность: 3
Классы: 8,9

В каждой клетке секретной таблицы n×n записана одна из цифр от 1 до 9. Из них получаются n-значные числа, записанные в строках слева направо и в столбцах сверху вниз. Петя хочет написать такое n-значное число без нулей в записи, чтобы ни это число, ни оно же, записанное задом наперед, не совпадало ни с одним из 2n чисел в строках и столбцах таблицы. В каком наименьшем количестве клеток Петя должен для этого узнать цифры?

Прислать комментарий     Решение

Задача 116423

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ НОД и НОК. Взаимная простота ]
[ Доказательство от противного ]
Сложность: 3
Классы: 8,9,10,11

  а) Есть кусок сыра. Разрешается выбрать любое положительное (возможно, нецелое) число  a ≠ 1,  и разрезать этот кусок в отношении  1 : a  по весу, затем разрезать в том же отношении любой из имеющихся кусков, и т. д. Можно ли действовать так, что после конечного числа разрезаний весь сыр удастся разложить на две кучки равного веса?
  б) Тот же вопрос, но выбирается положительное рациональное  a ≠ 1.

Прислать комментарий     Решение

Задача 116744

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Симметрия помогает решить задачу ]
[ Комбинаторная геометрия (прочее) ]
Сложность: 3
Классы: 8,9

Автор: Фольклор

На плоскости даны два равных многоугольника F и F'. Известно, что все вершины многоугольника F принадлежат F' (могут лежать внутри него или на границе). Верно ли, что все вершины этих многоугольников совпадают?

Прислать комментарий     Решение

Задача 116192

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Пятиугольники ]
[ Замощения костями домино и плитками ]
[ Комбинаторная геометрия (прочее) ]
Сложность: 3
Классы: 10,11

ABCDE — правильный пятиугольник. Tочка B' симметрична точке B относительно прямой AC (см. рисунок). Mожно ли пятиугольниками, равными AB'CDE, замостить плоскость?

Прислать комментарий     Решение

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 1027]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .