ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 207]      



Задача 102259

Темы:   [ Биссектриса угла ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

Через центр окружности, вписанной в треугольник ABC, провели прямую MN параллельно основанию AB (M лежит на BC, N – на AC).
Найдите периметр четырёхугольника ABMN, если известно, что  AB = 5,  MN = 3.

Прислать комментарий     Решение

Задача 102260

Темы:   [ Биссектриса угла ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

Через центр окружности, вписанной в треугольник ABC, провели прямую MN параллельно основанию AB (M лежит на BC, N – на AC).
Найдите длину отрезка MN, если известны периметр  P  = 14  четырёхугольника ABMN и длина основания  AB = 6.

Прислать комментарий     Решение

Задача 108105

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки и свойства параллелограмма ]
Сложность: 3+
Классы: 8,9

Автор: Сонкин М.

В остроугольном треугольнике ABC через центр O описанной окружности и вершины B и C проведена окружность S. Пусть OK – диаметр окружности S, D и E – соответственно точки её пересечения с прямыми AB и AC. Докажите, что ADKE – параллелограмм.

Прислать комментарий     Решение

Задача 108900

Темы:   [ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Четырехугольники (прочее) ]
Сложность: 3+
Классы: 8,9

Дан выпуклый четырёхугольник ABCD. Серединные перпендикуляры к диагоналям BD и AC пересекают сторону AD в точках X и Y соответственно, причём X лежит между A и Y. Оказалось, что прямые BX и CY параллельны. Докажите, что прямые BD и AC перпендикулярны.

Прислать комментарий     Решение

Задача 111329

Темы:   [ Вспомогательные равные треугольники ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки и свойства параллелограмма ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

На сторонах AB и BC треугольника ABC выбраны точки K и M соответственно так, что  KM || AC.  Отрезки AM и KC пересекаются в точке O. Известно, что  AK = AO  и  KM = MC.  Докажите, что  AM = KB.

Прислать комментарий     Решение

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 207]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .