ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 75]      



Задача 102511

Темы:   [ Ромбы. Признаки и свойства ]
[ Площадь круга, сектора и сегмента ]
Сложность: 3
Классы: 8,9

В ромб, одна из диагоналей которого равна 10 см, вписан круг радиуса 3 см. Вычислите площадь части ромба, расположенной вне круга. Будет ли эта площадь больше 9 см2 ? (Ответ обосновать.)

Прислать комментарий     Решение


Задача 102512

Темы:   [ Ромбы. Признаки и свойства ]
[ Площадь круга, сектора и сегмента ]
Сложность: 3
Классы: 8,9

В ромб, одна из диагоналей которого равна 20 см, вписан круг радиуса 6 см. Вычислите площадь части ромба, расположенной вне круга. Будет ли эта площадь больше 36 см2 ? (Ответ обосновать.)

Прислать комментарий     Решение


Задача 53295

Темы:   [ Центральный угол. Длина дуги и длина окружности ]
[ Площадь круга, сектора и сегмента ]
Сложность: 3+
Классы: 8,9

Прямая делит длину дуги окружности в отношении 1:3. В каком отношении делит она площадь круга?

Прислать комментарий     Решение


Задача 53297

Темы:   [ Ромбы. Признаки и свойства ]
[ Площадь круга, сектора и сегмента ]
Сложность: 3+
Классы: 8,9

Дан ромб с острым углом $ \alpha$. Какую часть площади ромба составляет площадь вписанного в него круга?

Прислать комментарий     Решение


Задача 102410

Темы:   [ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Площадь круга, сектора и сегмента ]
Сложность: 3+
Классы: 8,9

Дан треугольник KLM с основанием KM, равным $ {\frac{\sqrt{3}}{2}}$, и стороной KL, равной 1. Через точки K и L проведена окружность, центр которой лежит на высоте LF, опущенной на основание KM. Известно, что FM = $ {\frac{\sqrt{3}}{6}}$. и точка F лежит на KM. Найдите площадь круга, ограниченного этой окружностью.

Прислать комментарий     Решение


Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 75]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .