ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 232]
Даны четыре окружности, каждая из которых касается внешним образом двух из трёх остальных. Докажите, что через точки касания можно провести окружность.
Пусть O — точка пересечения диагоналей трапеции ABCD
(
AB || CD), A1 и B1 — точки, симметричные
точкам A и B относительно биссектрисы угла AOB. Докажите,
что
Докажите, что в треугольнике шесть точек — середины сторон и основания высот — лежат на одной окружности ("окружности девяти точек").
Биссектрисы $AA_1, BB_1, CC_1$ треугольника $ABC$ пересекаются в точке $I$. Серединный перпендикуляр к отрезку $BB_1$ пересекает прямые $AA_1$, $CC_1$ в точках $A_0$, $C_0$. Докажите, что описанные окружности треугольников $A_0IC_0$ и $ABC$ касаются.
Около остроугольного треугольника $ABC$ описана окружность $\omega$ с центром $O$. Точка $A’$ диаметрально противоположна $A$ на $\omega$. На меньшей дуге $BC$ окружности $\omega$ выбрана точка $D$. Точка $D’$ симметрична $D$ относительно стороны $BC$. Прямая $A’D’$ вторично пересекает $\omega$ в точке $E$. Серединный перпендикуляр к $D’E$ пересекает стороны $AB$ и $AC$ в точках $F$ и $G$ соответственно. Докажите, что $\angle FOG=180^\circ-2\angle BAC$.
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 232]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке