Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 105]
|
|
Сложность: 4+ Классы: 10,11
|
В пространстве даны две пересекающиеся сферы разных радиусов и точка A, принадлежащая обеим сферам. Докажите, что в пространстве существует точка B, обладающая следующим свойством: если через точки A и B провести произвольную окружность, то точки ее повторного пересечения с данными сферами будут равноудалены от B.
|
|
Сложность: 5 Классы: 8,9,10
|
Правильный пятиугольник ABCDE со стороной a вписан в
окружность S. Прямые, проходящие через его вершины перпендикулярно
сторонам, образуют правильный пятиугольник со стороной b (см. рис.).
Сторона правильного пятиугольника, описанного около окружности S,
равна c. Докажите, что
a2 + b2 = c2.
Найдите геометрическое место середин всех хорд, проходящих
через данную точку окружности.
Докажите, что если в четырехугольнике два
противоположные угла тупые, то диагональ,
соединяющая вершины этих углов, меньше другой диагонали.
Дан остроугольный треугольник ABC. Точки B' и C'
симметричны соответственно вершинам B и C относительно прямых AC и AB. Пусть P – точка пересечения описанных окружностей треугольников ABB' и ACC', отличная от A. Докажите, что центр описанной окружности треугольника ABC лежит на прямой PA.
Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 105]