ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 306]
Диагонали выпуклого четырёхугольника взаимно перпендикулярны. Докажите, что четыре проекции точки пересечения диагоналей на стороны четырёхугольника лежат на одной окружности.
Дан квадрат ABCD. Точки P и Q лежат на сторонах AB и BC соответственно, причём BP = BQ. Пусть H – основание перпендикуляра, опущенного из точки B на отрезок PC. Докажите, что угол DHQ – прямой.
Окружность радиуса R, проведённая через вершины A, B и
C прямоугольной трапеции ABCD (
Около треугольника ABC описана окружность. Диаметр AD пересекает сторону BC в точке E, при этом AE = AC и BE : CE = m. Найдите отношение DE к AE.
Около треугольника AMB описана окружность, центр которой
удалён от стороны AM на расстояние 10. Продолжение стороны AM за
вершину M отсекает от касательной к окружности, проведённой через
вершину B , отрезок CB , равный 29. Найдите площадь треугольника
CMB , если известно, что угол ACB равен arctg
Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 306]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке