ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 402]      



Задача 53472

Темы:   [ Средняя линия треугольника ]
[ Признаки и свойства параллелограмма ]
Сложность: 3
Классы: 8,9

Середины E и F параллельных сторон BC и AD параллелограмма ABCD соединены с вершинами D и B соответственно.
Докажите, что прямые BF и ED делят диагональ AC на три равные части.

Прислать комментарий     Решение

Задача 53547

Темы:   [ Периметр треугольника ]
[ Признаки и свойства параллелограмма ]
Сложность: 3
Классы: 8,9

Параллелограмм с периметром, равным 44, разделен диагоналями на четыре треугольника. Разность между периметрами двух смежных треугольников
равна 6. Найдите стороны параллелограмма.

Прислать комментарий     Решение

Задача 53761

Темы:   [ Признаки подобия ]
[ Признаки и свойства параллелограмма ]
Сложность: 3
Классы: 8,9

В параллелограмме ABCD сторона  AB = 420.  На стороне BC взята точка E так, что  BE : EC = 5: 7,  и проведена прямая DE, пересекающая продолжение AB в точке F. Найдите BF.

Прислать комментарий     Решение

Задача 53762

Темы:   [ Признаки подобия ]
[ Признаки и свойства параллелограмма ]
[ Центральная симметрия помогает решить задачу ]
Сложность: 3
Классы: 8,9

ABCD – данный параллелограмм. Через точку пересечения его диагоналей проведена перпендикулярная к BC прямая, которая пересекает BC в точке E, а продолжение AB – в точке F. Найдите BE, если  AB = a,  BC = b  и  BF = c.

Прислать комментарий     Решение

Задача 54096

Темы:   [ Три прямые, пересекающиеся в одной точке ]
[ Признаки и свойства параллелограмма ]
Сложность: 3
Классы: 8,9

Противоположные стороны шестиугольника попарно равны и параллельны.
Докажите, что отрезки, соединяющие противоположные вершины, пересекаются в одной точке.

Прислать комментарий     Решение

Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 402]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .