ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Страница: << 52 53 54 55 56 57 58 >> [Всего задач: 460]
В трапеции CDEF (
DE
Точка F лежит на продолжении стороны BC параллелограмма ABCD за точку C. Отрезок AF пересекает диагональ BD в точке E, а сторону CD – в точке G. Известно, что AE = 2 и GF = 3. Найдите отношение площадей треугольников BAE и EDG.
Каждая из 9 прямых разбивает квадрат на два четырхугольника, площади которых относятся как 2:3. Докажите, что по крайней мере три из этих девяти прямых проходят через одну точку.
На стороне BC треугольника ABC как на диаметре построена
окружность, пересекающая отрезок AB в точке D. Найдите отношение
площадей треугольников ABC и BCD, если известно, что AC = 15,
BC = 20 и
Отрезки, соединяющие основания высот остроугольного треугольника, равны 8, 15 и 17. Найдите площадь треугольника.
Страница: << 52 53 54 55 56 57 58 >> [Всего задач: 460]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке