ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Два квадрата BCDA и BKMN имеют общую вершину B. Докажите, что медиана BE треугольника ABK и высота BF треугольника CBN лежат на одной прямой. (Вершины обоих квадратов перечислены по часовой стрелке.)

Вниз   Решение


Автор: Тарасов А.

  Как известно, Луна вращается вокруг Земли. Будем считать, что Земля и Луна – это точки, а Луна вращается вокруг Земли по круговой орбите с периодом один оборот в месяц. Летающая тарелка находится в плоскости лунной орбиты. Она может перемещаться прыжками через Луну и Землю: из старого места (точки А) она моментально появляется в новом (в точке A') так, что в середине отрезка АA' находится или Луна, или Земля. Между прыжками летающая тарелка неподвижно висит в космическом пространстве.
  а) Определите, какое минимальное количество прыжков потребуется летающей тарелке, чтобы допрыгнуть из любой точки внутри лунной орбиты до любой другой точки внутри лунной орбиты.
  б) Докажите, что летающая тарелка, используя неограниченное количество прыжков, может допрыгнуть из любой точки внутри лунной орбиты до любой другой точки внутри лунной орбиты за любой промежуток времени, например, за секунду.

ВверхВниз   Решение


m и n – натуральные числа,  m < n.  Докажите, что  

ВверхВниз   Решение


Докажите, что если углы выпуклого пятиугольника образуют арифметическую прогрессию, то каждый из них больше  36o.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 159]      



Задача 110971

Темы:   [ Средние пропорциональные в прямоугольном треугольнике ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3
Классы: 8,9

Высоты остроугольного треугольника ABC пересекаются в точке O . Окружность радиуса R с центром в точке O проходит через вершину B , касается стороны AC и пересекает сторону AB в точке K такой, что BK:AK=5:1 . Найдите длину стороны BC .
Прислать комментарий     Решение


Задача 110973

Темы:   [ Средние пропорциональные в прямоугольном треугольнике ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3
Классы: 8,9

Высоты остроугольного треугольника ABC пересекаются в точке O . Окружность радиуса R с центром в точке O проходит через вершину A , касается стороны BC и пересекает сторону AC в точке M такой, что AM:MC=4:1 . Найдите длину стороны AB .
Прислать комментарий     Решение


Задача 111046

Темы:   [ Средние пропорциональные в прямоугольном треугольнике ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3
Классы: 8,9

На окружности взята точка A , на диаметре BC — точки D и E , а на его продолжении за точку B — точка F . Найдите BC , если BAD = ACD , BAF = CAE , BD=2 , BE=5 и BF=4 .
Прислать комментарий     Решение


Задача 111048

Темы:   [ Средние пропорциональные в прямоугольном треугольнике ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3
Классы: 8,9

На диаметре AB окружности взяты точки C и D , на его продолжении за точку B — точка E , а на окружности — точка F , причём AFC = BFE , DAF = BFD , AB=8 , CB=6 и DB=5 . Найдите BE .
Прислать комментарий     Решение


Задача 111451

Темы:   [ Средние пропорциональные в прямоугольном треугольнике ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3
Классы: 8,9

В прямоугольном треугольнике ABC из вершины прямого угла C опущена высота CD . Проекция отрезка BD на катет BC равна l , а проекция отрезка AD на катет AC равна m . Найдите гипотенузу AB .
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 159]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .