ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 95]      



Задача 110951

Темы:   [ Отношение объемов ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Отношение площадей треугольников с общим углом ]
Сложность: 4
Классы: 8,9

Сфера проходит через точки A , B , C , D и пересекает отрезки SA , SB , SC , SD в точках A1 , B1 , C1 , D1 соответственно. Известно, что SD1 = , DD1 = , отношение площадей треугольников SA1B1 и SAB равно , отношение объёмов пирамид SB1C1D1 и SBCD равно , а отношение объёмов пирамид SA1B1C1 и SABC равно . Найдите отрезки SA1 , SB1 , SC1 .
Прислать комментарий     Решение


Задача 110952

Темы:   [ Отношение объемов ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Отношение площадей треугольников с общим углом ]
Сложность: 4
Классы: 8,9

Точки A , B , C , D , A1 , B1 , C1 , D1 лежат на сфере. Отрезки AA1 , BB1 , CC1 , DD1 пересекаются в точке S , которая делит отрезок DD1 пополам. Известно, что DD1 = 2 , отношение радиусов вписанных окружностей треугольников SB1C и SBC1 равно , отношение объёмов пирамид SABC и SA1B1C1 равно , а отношение объёмов пирамид SA1BD и SAB1D1 равно . Найдите отрезки SA , SB , SC .
Прислать комментарий     Решение


Задача 111392

Темы:   [ Свойства сечений ]
[ Правильный тетраэдр ]
[ Отношение площадей треугольников с общим углом ]
Сложность: 4
Классы: 10,11

В правильном тетраэдре ABCD плоскость P пересекает рёбра AB , BC , CD , AD в точках K , L , M , N соответственно. Площади треугольников AKN , KBL , NDM составляют соответственно , , площади грани тетраэдра. В каком отношении плоскость P делит площадь грани BCD ?
Прислать комментарий     Решение


Задача 116341

Темы:   [ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки подобия ]
[ Признаки и свойства параллелограмма ]
[ Отношение площадей треугольников с общим углом ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 3-
Классы: 8,9,10

Точка M расположена на стороне BC параллелограмма ABCD, причём  BM : MC = 3 : 2.  Отрезки AM и BD пересекаются в точке K. Известно, что площадь параллелограмма равна 1. Найдите площадь четырёхугольника CMKD.

Прислать комментарий     Решение

Задача 102524

Темы:   [ Теорема синусов ]
[ Теорема косинусов ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Отношение площадей треугольников с общим углом ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC  AB = 4,  BC = 5. Из вершины B проведён отрезок BM  (MAC),  причём  ∠ABM = 45°  и ∠MBC = 30°.
  а) В каком отношении точка M делит сторону AC?
  б) Вычислите длины отрезков AM и MC.

Прислать комментарий     Решение

Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 95]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .