ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 78]      



Задача 108495

Темы:   [ Окружность, вписанная в угол ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Вневписанные окружности ]
[ Признаки и свойства касательной ]
Сложность: 4-
Классы: 8,9

Первая окружность с центром в точке A касается сторон угла KOL в точках K и L. Вторая окружность с центром в точке B касается отрезка OK, луча LK и продолжения стороны угла OL за точку O. Известно, что отношение радиуса первой окружности к радиусу второй окружности равно $ {\frac{15}{16}}$. Найдите отношение отрезков OB и OA.

Прислать комментарий     Решение


Задача 108496

Темы:   [ Окружность, вписанная в угол ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Вневписанные окружности ]
[ Признаки и свойства касательной ]
Сложность: 4-
Классы: 8,9

Окружность с центром в точке M касается сторон угла AOB в точках A и B. Вторая окружность с центром в точке N касается отрезка OA, луча BA и продолжения стороны угла OB за точку O. Известно, что ON : OM = 5 : 13. Найдите отношение радиусов окружностей.

Прислать комментарий     Решение


Задача 56891

Темы:   [ Окружность, вписанная в угол ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Тождественные преобразования ]
Сложность: 4
Классы: 8,9

В каждый из углов треугольника ABC вписано по окружности. Из одной вершины окружности, вписанные в два других угла, видны под равными углами. Из другой – тоже. Докажите, что тогда и из третьей вершины две окружности видны под равными углами.

Прислать комментарий     Решение

Задача 56895

Темы:   [ Окружность, вписанная в угол ]
[ Касающиеся окружности ]
[ Теорема Пифагора (прямая и обратная) ]
[ Теорема косинусов ]
[ Вписанная, описанная и вневписанная окружности; их радиусы ]
Сложность: 4
Классы: 8,9

Окружность радиуса ua вписана в угол A треугольника ABC, окружность радиуса ub вписана в угол B; эти окружности касаются друг друга внешним образом. Докажите, что радиус описанной окружности треугольника со сторонами     равен    где p – полупериметр треугольника ABC.

Прислать комментарий     Решение

Задача 56897

Темы:   [ Окружность, вписанная в угол ]
[ Вписанная, описанная и вневписанная окружности; их радиусы ]
Сложность: 4
Классы: 9,10

Окружность S1 вписана в угол A треугольника ABC. Из вершины C к ней проведена касательная (отличная от CA), и в образовавшийся треугольник с вершиной B вписана окружность S2. Из вершины A к S2 проведена касательная, и в образовавшийся треугольник с вершиной C вписана окружность S3
и т. д. Докажите, что окружность S7 совпадает с S1.

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 78]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .