Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 78]
Первая окружность с центром в точке A касается сторон угла KOL в точках K и L.
Вторая окружность с центром в точке B касается отрезка OK, луча LK
и продолжения стороны угла OL за точку O. Известно, что отношение радиуса
первой окружности к радиусу второй окружности равно
.
Найдите отношение отрезков OB и OA.
Окружность с центром в точке M касается сторон угла AOB в точках A и B.
Вторая окружность с центром в точке N касается отрезка OA, луча BA
и продолжения стороны угла OB за точку O. Известно, что
ON : OM = 5 : 13.
Найдите отношение радиусов окружностей.
В каждый из углов треугольника ABC вписано по окружности. Из одной вершины окружности, вписанные в два других угла, видны под равными углами. Из другой – тоже. Докажите, что тогда и из третьей вершины две окружности видны под равными углами.
Окружность радиуса ua вписана в угол A треугольника ABC, окружность радиуса ub вписана в угол B; эти окружности касаются друг друга внешним образом. Докажите, что радиус
описанной окружности треугольника со сторонами равен где p – полупериметр треугольника ABC.
Окружность S1 вписана в угол A треугольника ABC. Из вершины C к ней проведена касательная (отличная от CA), и в образовавшийся треугольник с вершиной B вписана окружность
S2. Из вершины A к S2 проведена касательная, и в образовавшийся треугольник с вершиной C вписана окружность
S3
и т. д. Докажите, что окружность S7 совпадает с S1.
Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 78]