ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 129]      



Задача 54293

Темы:   [ Перенос стороны, диагонали и т.п. ]
[ Площадь трапеции ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 4-
Классы: 8,9

В трапеции ABCD углы A и D при основании AD соответственно равны 60o и 30o. Точка N лежит на основании BC, причём BN : NC = 2. Точка M лежит на основании AD, прямая MN перпендикулярна основаниям трапециии и делит её площадь пополам. Найдите отношение AM : MD.

Прислать комментарий     Решение


Задача 54294

Темы:   [ Трапеции с суммой углов при основании 90╟ ]
[ Площадь трапеции ]
Сложность: 4-
Классы: 8,9

В трапеции ABCD углы A и D при основании AD соответственно равны 60o и 90o. Точка N лежит на основании BC, причём BN : BC = 2 : 3. Точка M лежит на основании AD, прямая MN параллельна боковой стороне AB и делит площадь трапеции пополам. Найдите AB : BC.

Прислать комментарий     Решение


Задача 54314

Темы:   [ Перенос стороны, диагонали и т.п. ]
[ Площадь трапеции ]
Сложность: 4-
Классы: 8,9

В трапеции основания равны 5 и 15, а диагонали — 12 и 16. Найдите площадь трапеции.

Прислать комментарий     Решение


Задача 54279

Темы:   [ Перенос стороны, диагонали и т.п. ]
[ Площадь трапеции ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 4-
Классы: 8,9

Боковые стороны AB и CD трапеции ABCD равны соответственно 8 и 10, а основание BC равно 2. Биссектриса угла ADC проходит через середину стороны AB. Найдите площадь трапеции.

Прислать комментарий     Решение

Задача 66358

Темы:   [ Средняя линия трапеции ]
[ Площадь трапеции ]
Сложность: 4-
Классы: 9,10,11

В выпуклом четырёхугольнике АВСD точка K – середина стороны ВС, а  SАВСD = 2SАKD.
Найдите длину медианы КЕ треугольника AKD, если  AB = a,  CD = b.

Прислать комментарий     Решение

Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 129]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .