Страница: << 94 95 96 97 98 99 100 >> [Всего задач: 1224]
|
|
Сложность: 3+ Классы: 7,8,9,10
|
Все натуральные числа поделены на хорошие и плохие. Известно, что если число m хорошее, то и число m + 6 тоже хорошее, а если число n плохое, то и число n + 15 тоже плохое. Может ли среди первых 2000 чисел быть ровно 1000 хороших?
Найти все числа, которые в 12 раз больше суммы своих цифр.
|
|
Сложность: 3+ Классы: 6,7,8
|
На доске написаны числа
а) 1, 2. 3, ..., 1997, 1998;
б) 1, 2, 3, ..., 1998, 1999;
в) 1, 2, 3, ..., 1999, 2000.
Разрешается стереть с доски любые два числа, заменив их разностью большего и меньшего. Можно ли, выполнив эту операцию много раз. получить на доске единственное число – 0? Если да, то как это сделать?
На доске записано несколько нулей, единиц и двоек. Разрешается стереть две неравные цифры и записать вместо них одну цифру, отличную от стёртых. Докажите, что если в результате нескольких таких операций на доске останется одна-единственная цифра, то она не зависит от порядка, в котором производились стирания.
|
|
Сложность: 3+ Классы: 8,9,10
|
Докажите, что
при n > 1.
Страница: << 94 95 96 97 98 99 100 >> [Всего задач: 1224]