ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 152 153 154 155 156 157 158 >> [Всего задач: 1221]      



Задача 110076

Темы:   [ Десятичная система счисления ]
[ Перебор случаев ]
[ Последовательности (прочее) ]
Сложность: 5-
Классы: 9,10,11

Саша написал на доске ненулевую цифру и приписывает к ней справа по одной ненулевой цифре, пока не выпишет миллион цифр. Докажите, что на доске не более 100 раз был написан точный квадрат.
Прислать комментарий     Решение


Задача 111695

Темы:   [ Теория алгоритмов (прочее) ]
[ Разбиения на пары и группы; биекции ]
[ Индукция (прочее) ]
[ Четность и нечетность ]
Сложность: 5-
Классы: 9,10,11

Тест состоит из 30 вопросов, на каждый есть два варианта ответа (один верный, другой нет). За одну попытку Витя отвечает на все вопросы, после чего ему сообщают, на сколько вопросов он ответил верно. Сможет ли Витя действовать так, чтобы гарантированно узнать все верные ответы не позже, чем
  а) после 29-й попытки (и ответить верно на все вопросы при 30-й попытке);
  б) после 24-й попытки (и ответить верно на все вопросы при 25-й попытке)?
(Изначально Витя не знает ни одного ответа, тест всегда один и тот же.)

Прислать комментарий     Решение

Задача 111769

Темы:   [ Неравенство Коши ]
[ Замена переменных ]
[ Индукция (прочее) ]
Сложность: 5-
Классы: 9,10,11

Для положительных чисел x1, x2, ..., xn докажите неравенство  

Прислать комментарий     Решение

Задача 60911

 [Последовательность Морса]
Темы:   [ Периодичность и непериодичность ]
[ Итерации ]
[ Двоичная система счисления ]
Сложность: 5
Классы: 8,9,10,11

Последовательность Морса. Бесконечная последовательность из нулей и единиц

0110 1001 1001 0110 1001...

построена по следующему правилу. Сначала написан нуль. Затем делается бесконечное количество шагов. На каждом шаге к уже написанному куску последовательности приписывается новый кусок той же длины, получаемый из него заменой всех нулей единицами, а единиц — нулями.
а) Какая цифра стоит на 2001 месте?
б) Будет ли эта последовательность, начиная с некоторого места, периодической?
в) Докажите, что данная последовательность переходит в себя при замене каждого нуля на комбинацию 01, а каждой единицы — на комбинацию 10.
г) Докажите, что ни одно конечно слово из нулей и единиц не встречается в последовательности Морса три раза подряд.
д) Как, зная представление числа n в двоичной системе счисления, найти n-й элемент данной последовательности?

Прислать комментарий     Решение

Задача 61317

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Итерации ]
Сложность: 5
Классы: 10,11

С какой гарантированной точностью вычисляется $ \sqrt{k}$ при помощи алгоритма задачи 9.48 после пяти шагов?

Прислать комментарий     Решение

Страница: << 152 153 154 155 156 157 158 >> [Всего задач: 1221]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .