ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Страница: << 152 153 154 155 156 157 158 >> [Всего задач: 1221]
Тест состоит из 30 вопросов, на каждый есть два варианта ответа (один верный, другой нет). За одну попытку Витя отвечает на все вопросы, после чего ему сообщают, на сколько вопросов он ответил верно. Сможет ли Витя действовать так, чтобы гарантированно узнать все верные ответы не позже, чем
Для положительных чисел x1, x2, ..., xn докажите неравенство
0110 1001 1001 0110 1001...
построена по следующему правилу. Сначала написан нуль. Затем
делается бесконечное количество шагов. На каждом шаге к уже
написанному куску последовательности приписывается новый кусок
той же длины, получаемый из него заменой всех нулей единицами, а
единиц — нулями.
а) Какая цифра стоит на 2001 месте? б) Будет ли эта последовательность, начиная с некоторого места, периодической? в) Докажите, что данная последовательность переходит в себя при замене каждого нуля на комбинацию 01, а каждой единицы — на комбинацию 10. г) Докажите, что ни одно конечно слово из нулей и единиц не встречается в последовательности Морса три раза подряд. д) Как, зная представление числа n в двоичной системе счисления, найти n-й элемент данной последовательности?
Страница: << 152 153 154 155 156 157 158 >> [Всего задач: 1221] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|