Страница:
<< 165 166 167 168
169 170 171 >> [Всего задач: 1235]
|
|
|
Сложность: 3 Классы: 6,7,8
|
Есть 20 карточек, у каждой из которых на двух сторонах написано по числу. При этом все числа от 1 до 20 написаны по два раза.
Доказать, что карточки можно разложить так, чтобы все числа сверху были различны.
|
|
|
Сложность: 3 Классы: 8,9,10
|
Шеренга солдат называется неправильной, если никакие три подряд стоящих солдата не стоят по росту (ни в порядке возрастания, ни в порядке убывания). Сколько неправильных шеренг можно построить из n солдат разного роста, если
а) n = 4;
б) n = 5?
|
|
|
Сложность: 3 Классы: 6,7,8
|
Когда натуральное число имеет нечётное количество делителей?
|
|
|
Сложность: 3 Классы: 7,8,9
|
В пробирке находятся марсианские амёбы трёх типов A, B и C. Две амёбы любых двух разных типов могут слиться в одну амёбу третьего типа. После нескольких таких слияний в пробирке оказалась одна амёба. Каков её тип, если исходно амёб типа A было 20 штук, типа B – 21 штука и типа C – 22 штуки?
|
|
|
Сложность: 3 Классы: 9,10,11
|
Как правило знаков Декарта применить к оценке числа отрицательных корней многочлена f(x) = anxn + ... + a1x + a0?
Страница:
<< 165 166 167 168
169 170 171 >> [Всего задач: 1235]