Страница: << 166 167 168 169 170 171 172 >> [Всего задач: 1224]
Доказать, что если n чётно, то числа 1, 2, 3, ..., n² можно таким образом расположить в квадратную таблицу n×n, чтобы суммы чисел, стоящих в каждом столбце, были одинаковы.
|
|
Сложность: 3 Классы: 7,8,9,10
|
Расставить в таблице 4×4 16 чисел так, чтобы сумма чисел по любой
вертикали, горизонтали и диагонали равнялась нулю. (Таблица имеет 14 диагоналей, включая все малые, состоящие из трёх, двух и одной клеток. Хотя бы одно из чисел должно быть отлично от нуля.)
В наборе имеется 100 гирь, каждые две из которых отличаются по массе не более
чем на 20 г. Доказать, что эти гири можно положить на две чашки весов, по 50
штук на каждую, так, чтобы одна чашка весов была легче другой не более чем на
20 г.
Доказать, что в прямоугольник размером
2n×2m (n и m — целые)
можно уложить в два слоя кости домино размером 1×2 так, чтобы каждый
слой полностью покрывал прямоугольник и чтобы никакие две кости из разных
слоёв не совпадали друг с другом.
Укажите все пары (x; y), для которых выполняется равенство (x4 + 1)(y4 + 1) = 4x²y².
Страница: << 166 167 168 169 170 171 172 >> [Всего задач: 1224]