Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 166 167 168 169 170 171 172 >> [Всего задач: 1224]      



Задача 78238

Темы:   [ Числовые таблицы и их свойства ]
[ Примеры и контрпримеры. Конструкции ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3
Классы: 8,9

Доказать, что если n чётно, то числа 1, 2, 3, ..., n² можно таким образом расположить в квадратную таблицу n×n, чтобы суммы чисел, стоящих в каждом столбце, были одинаковы.

Прислать комментарий     Решение

Задача 78651

Темы:   [ Числовые таблицы и их свойства ]
[ Примеры и контрпримеры. Конструкции ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3
Классы: 7,8,9,10

Расставить в таблице 4×4 16 чисел так, чтобы сумма чисел по любой вертикали, горизонтали и диагонали равнялась нулю. (Таблица имеет 14 диагоналей, включая все малые, состоящие из трёх, двух и одной клеток. Хотя бы одно из чисел должно быть отлично от нуля.)

Прислать комментарий     Решение

Задача 78729

Темы:   [ Взвешивания ]
[ Процессы и операции ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3
Классы: 8

В наборе имеется 100 гирь, каждые две из которых отличаются по массе не более чем на 20 г. Доказать, что эти гири можно положить на две чашки весов, по 50 штук на каждую, так, чтобы одна чашка весов была легче другой не более чем на 20 г.
Прислать комментарий     Решение


Задача 79350

Темы:   [ Замощения костями домино и плитками ]
[ Примеры и контрпримеры. Конструкции ]
[ Процессы и операции ]
Сложность: 3
Классы: 8

Доказать, что в прямоугольник размером 2n×2m (n и m — целые) можно уложить в два слоя кости домино размером 1×2 так, чтобы каждый слой полностью покрывал прямоугольник и чтобы никакие две кости из разных слоёв не совпадали друг с другом.
Прислать комментарий     Решение


Задача 86502

Темы:   [ Тождественные преобразования ]
[ Неравенство Коши ]
[ Выделение полного квадрата. Суммы квадратов ]
Сложность: 3
Классы: 8,9

Укажите все пары  (x; y),  для которых выполняется равенство   (x4 + 1)(y4 + 1) = 4x²y².

Прислать комментарий     Решение

Страница: << 166 167 168 169 170 171 172 >> [Всего задач: 1224]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .