Страница:
<< 25 26 27 28
29 30 31 >> [Всего задач: 222]
|
|
|
Сложность: 4+ Классы: 10,11
|
Внутри прямоугольного листа бумаги вырезали n прямоугольных дыр со сторонами, параллельными краям листа. На какое наименьшее число прямоугольных частей можно гарантированно разрезать этот дырявый лист? (Дыры не перекрываются и не соприкасаются.)
|
|
|
Сложность: 5- Классы: 8,9,10
|
Если разность между наибольшим и наименьшим из
n данных вещественных чисел
равна d, а сумма модулей всех
n(n – 1)/2 попарных разностей этих чисел
равна s, то
(n – 1)d £ s £ n2d/4.
Докажите это.
|
|
|
Сложность: 5- Классы: 8,9,10
|
В ботаническом справочнике каждое растение характеризуется 100 признаками
(каждый признак либо присутствует, либо отсутствует). Растения считаются
непохожими, если они различаются не менее, чем по 51 признаку.
а) Покажите, что в справочнике не может находиться больше 50 попарно непохожих растений.
б) А может ли быть ровно 50?
|
|
|
Сложность: 5 Классы: 9,10,11
|
Учащиеся одной школы часто собираются группами и ходят в кафе-мороженое.
После такого посещения они ссорятся настолько, что никакие двое из них после
этого вместе мороженое не едят. К концу года выяснилось, что в дальнейшем они могут ходить в кафе-мороженое только поодиночке. Докажите, что если число посещений было к этому времени больше 1, то оно не меньше числа учащихся в школе.
|
|
|
Сложность: 5 Классы: 8,9,10
|
Найдите суммы
а) 1·n + 2(n – 1) + 3(n – 2) + ... + n·1.
б) Sn,k = (1·2·...·k)·(n(n – 1)...(n – k + 1)) + (2·3·...·(k + 1))·((n – 1)(n – 2)...(n – k)) + ... + ((n – k + 1)(n – k + 2)...·n)·(k(k – 1)·...·1).
Страница:
<< 25 26 27 28
29 30 31 >> [Всего задач: 222]