Страница:
<< 26 27 28 29
30 31 32 >> [Всего задач: 217]
На координатной плоскости (
x;
y) проведена окружность радиуса 4 с
центром в начале координат. Прямая, заданная уравнением
y =
x - 4, пересекает её в точках
A и
B. Найдите сумму длин
отрезка
AB и большей дуги
AB.
|
|
Сложность: 3+ Классы: 10,11
|
Можно ли через вершины куба провести 8 параллельных плоскостей так,
чтобы расстояния между соседними плоскостями были равны?
|
|
Сложность: 3+ Классы: 7,8,9
|
Рассматривается конечное множество M единичных квадратов на плоскости. Их стороны параллельны осям координат (разрешается, чтобы квадраты пересекались).
Известно, что для любой пары квадратов расстояние между их центрами не больше 2. Докажите, что существует единичный квадрат (не обязательно из множества M) со сторонами, параллельными осям, пересекающийся хотя бы по точке с каждым квадратом множества M.
|
|
Сложность: 3+ Классы: 10,11
|
Существует ли в пространстве куб, расстояния от вершин которого до данной
плоскости равны 0, 1, 2, 3, 4, 5, 6, 7?
|
|
Сложность: 3+ Классы: 10,11
|
В пространстве даны восемь параллельных плоскостей таких, что расстояния между
каждыми двумя соседними равны. На каждой из плоскостей выбирается по точке. Могут ли выбранные точки оказаться вершинами куба.
Страница:
<< 26 27 28 29
30 31 32 >> [Всего задач: 217]