Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 128 129 130 131 132 133 134 >> [Всего задач: 696]      



Задача 110911

Темы:   [ Конус ]
[ Правильная пирамида ]
[ Углы между прямыми и плоскостями ]
[ Теорема косинусов ]
Сложность: 4
Классы: 8,9

Сторона основания правильной четырёхугольной пирамиды SABCD ( S – вершина) равна 4. Точки E и F расположены на рёбрах CB и AD соответственно, причём CE=3 , AF=2 . Известно, что для данной пирамиды существует единственный конус, вершина которого совпадает с точкой F , центр основания лежит на прямой SD , а отрезок EF является одной из образующих. Найдите объём этого конуса.
Прислать комментарий     Решение


Задача 110912

Темы:   [ Конус ]
[ Правильная пирамида ]
[ Углы между прямыми и плоскостями ]
[ Теорема косинусов ]
Сложность: 4
Классы: 8,9

Сторона основания правильной треугольной пирамиды SABC ( S – вершина) равна 3. Точки K и L расположены на рёбрах AC и BC соответственно, причём CK= , BL=1 . Известно, что для данной пирамиды существует единственный конус, вершина которого совпадает с точкой K , центр основания лежит на прямой SB , а отрезок KL является одной из образующих. Найдите объём этого конуса.
Прислать комментарий     Решение


Задача 110996

Темы:   [ Отношение объемов ]
[ Объем тетраэдра и пирамиды ]
[ Cкрещивающиеся прямые, угол между ними ]
Сложность: 4
Классы: 8,9

Основание пирамиды SABCD – параллелограмм ABCD , точки M и N – середины рёбер SC и SD соответственно. Прямые SA , BM и CN попарно перпендикулярны. Найдите объём пирамиды, если SA=a , BM=b , CN=c .
Прислать комментарий     Решение


Задача 111197

Темы:   [ Правильная призма ]
[ Правильная пирамида ]
[ Теорема о трех перпендикулярах ]
Сложность: 4
Классы: 10,11

В правильной призме ABCA1B1C1 длина стороны основания равна 2a , длина бокового ребра – a . Через вершину A проведена плоскость перпендикулярно прямой AB1 , через вершину B – плоскость перпендикулярно прямой BC1 , через вершину C – плоскость перпендикулярно прямой CA1 . Найдите объём многогранника, ограниченного этими тремя плоскостями и плоскостью A1B1C1 .
Прислать комментарий     Решение


Задача 111198

Темы:   [ Правильная призма ]
[ Правильная пирамида ]
[ Теорема о трех перпендикулярах ]
Сложность: 4
Классы: 10,11

В правильной призме ABCA1B1C1 длина стороны основания равна 2a , длина бокового ребра – a . Проведены четыре плоскости: первая – через точку B перпендикулярно прямой BA1 , вторая – через точку C перпендикулярно прямой CA1 , третья – через точку B1 перпендикулярно прямой B1A , четвёртая – через точку C1 перпендикулярно прямой C1A . Найдите объём многогранника, ограниченного этими четырьмя плоскостями и плоскостью BB1C1C .
Прислать комментарий     Решение


Страница: << 128 129 130 131 132 133 134 >> [Всего задач: 696]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .