Страница:
<< 3 4 5 6
7 8 9 >> [Всего задач: 127]
|
|
Сложность: 3 Классы: 10,11
|
Радиус основания конуса и образующая равны соответственно $\frac23$ и 2. Найдите длину кратчайшего замкнутого пути, пересекающего все образующие конуса и проходящего через конец одной из них, принадлежащий основанию.
|
|
Сложность: 3 Классы: 10,11
|
Радиус основания и высота цилиндра равны соответственно
r и
h .
Найдите длину кратчайшего пути по боковой поверхности цилиндра
между диаметрально противоположными точками разных оснований.
|
|
Сложность: 3+ Классы: 6,7,8,9
|
Город $N$ представляет собой клетчатый квадрат $9\times9$. За $10$ минут Таня может перейти из любой клетки в соседнюю по стороне. Ваня может открыть в любых двух клетках по станции метро – после этого можно будет перемещаться из одной такой клетки в другую за $10$ минут. Отметьте две клетки, в которых Ване нужно открыть метро, чтобы Таня могла добраться из любой клетки города в любую другую за $2$ часа.
На окружности расставлены 999 чисел, каждое равно 1 или –1, причём не все числа одинаковые. Возьмём все произведения по 10 подряд стоящих чисел и сложим их.
а) Какая наименьшая сумма может получиться?
б) А какая наибольшая?
|
|
Сложность: 3+ Классы: 10,11
|
На поверхности куба найти точки, из которых диагональ видна под
наименьшим углом. Доказать, что из остальных точек поверхности куба диагональ
видна под большим углом, чем из найденных.
Страница:
<< 3 4 5 6
7 8 9 >> [Всего задач: 127]