ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 157]      



Задача 86912

Темы:   [ Линейные зависимости векторов ]
[ Свойства сечений ]
Сложность: 3
Классы: 8,9

Высота правильной четырёхугольной пирамиды равна 8, апофема пирамиды равна 10. Найдите площадь сечения пирамиды плоскостью, проведённой через середину высоты параллельно плоскости основания.
Прислать комментарий     Решение


Задача 86913

Темы:   [ Линейные зависимости векторов ]
[ Cкрещивающиеся прямые, угол между ними ]
Сложность: 3
Классы: 8,9

Высота правильной четырёхугольной пирамиды равна 8, апофема пирамиды равна 10. Найдите расстояние между диагональю основания и скрещивающимся с ней боковым ребром.
Прислать комментарий     Решение


Задача 86914

Темы:   [ Линейные зависимости векторов ]
[ Свойства сечений ]
Сложность: 3
Классы: 8,9

Сторона основания правильной четырёхугольной пирамиды равна 8, а высота равна 3. Найдите площадь сечения пирамиды плоскостью, проходящей через одну из сторон основания и середину противоположного бокового ребра.
Прислать комментарий     Решение


Задача 86915

Темы:   [ Линейные зависимости векторов ]
[ Углы между прямыми и плоскостями ]
Сложность: 3
Классы: 8,9

Сторона основания правильной четырёхугольной пирамиды ABCDP ( P – вершина) равна 4 , а угол между соседними боковыми гранями равен 120o . Найдите площадь сечения пирамиды плоскостью, проходящей через диагональ BD основания параллельно боковому ребру CP .
Прислать комментарий     Решение


Задача 86916

Темы:   [ Линейные зависимости векторов ]
[ Углы между прямыми и плоскостями ]
Сложность: 3
Классы: 8,9

Основание пирамиды совпадает с одной из граней куба, а вершина – с центром противоположной грани. Найдите угол между соседними боковыми гранями пирамиды.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 157]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .